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Abstract 

As long-cherished postulate of theoretical physics, the principle of stationary action (SAP) 

defines the basis of classical mechanics and field theory. We argue here that SAP is 

overturned in dynamic regimes where sensitivity to initial conditions cannot be ignored. 

Attempts are made to bridge the gap between Hamiltonian chaos and effective field 

theory.   

Key words: stationary action, decoherence, Hamiltonian chaos, KAM theorem, Arnold 

diffusion, action quantization, effective field theory. 

 

1. Introduction 

As it is known, integrable systems form the backbone of classical and 

quantum field theory. A Hamiltonian (conservative) system with N  degrees 
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of freedom is integrable if it has N  independent commuting constants of 

motion. An important attribute of this class of systems is that all interactions 

can be eliminated by appropriate canonical transformations. Integrability 

implies the existence of periodic or quasi-periodic tori in phase-space, a 

property that can be extended to dissipative systems [1-3, 12]. 

Nature shows, however, that most interacting Hamiltonian systems are 

nonintegrable and their long-term evolution chaotic. The primary mechanism 

explaining the onset of Hamiltonian chaos is the Kolmogorov-Arnold-Moser 

(KAM) theorem, which is the perturbation theory of quasi-periodic tori 

applied to nearly-integrable Hamiltonian systems.  

In the context of this work, we take nonintegrability to arise either from 

sensitivity to initial conditions or undamped perturbations outside equilibrium. 

While sensitivity to initial conditions describes transition to chaos via 

positive Lyapunov exponents, undamped perturbations generate chaos via 

the progressive collapse of quasi-periodic tori, fragmentation of phase-space 

and the emergence of fractal spacetime [4-5].   
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As conjectured in several publications, the mechanism of decoherence - the 

loss of phase information and the entropy surge in open systems – comes 

into play beyond the Standard Model scale and favors the transition from 

quantum to classical behavior. A reasonable expectation is that deep 

Terascale physics falls outside thermodynamic equilibrium and, in doing so, 

it replicates the attributes of Hamiltonian chaos [6-9].    

The object of this work is to argue that sensitivity to initial conditions is 

bound to overturn SAP and, on account of decoherence, to bridge the gap 

between Hamiltonian chaos and the foundations of effective field theory. 

The paper is formatted in the following way: next section contains a brief 

introduction to SAP in classical field theory, with emphasis on 

electrodynamics and General Relativity. The breakdown of SAP due to 

sensitive dependence and its consequences for effective field theories are 

analyzed in the next couple of sections. We close with a summary and 

concluding remarks. The Appendix section elaborates on the topic of 

transversality constraints in variational problems and their connection to the 

issue of sensitive dependence.     
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2. Stationary action in classical field theory  

Classical field theory develops from the Lagrangian   

 ( , , )L L xµµϕ ϕ= ∂  (1) 

and the first order variation of the action functional given by [10-11] 

 4 [ ]{ [ ]}
( ) ( )RR

L L LS d x d L xµµ µ
µ µ

δ δϕ σ δϕ δ
ϕ ϕ ϕ∂

∂ ∂ ∂= − ∂ + +
∂ ∂ ∂ ∂ ∂∫∫  (2) 

Here, R  is the four-dimensional integration domain whose boundary is R∂ . 

The canonical treatment of (2) posits that both field and coordinate 

variations vanish on R∂ , i.e. 

 0xµδϕ δ= =   on R∂  (3) 

which supplies the field equation in the standard form 

 )[ ] ( , , [ ] 0
( )

S L Lx
x

µ
µ µ

µ

δ ϕ ϕ ϕ
δϕ ϕ ϕ

∂ ∂ ∂Λ = − =
∂ ∂ ∂ ∂

= ∂  (4) 

Applying (2) to classical electrodynamics ( Aϕ → ) and General Relativity, 

respectively, ( gϕ → ), yields  
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 4 ( ) 0Fd x A j
x
µν

µ
µ νδ ∂− =

∂∫  (5) 

 4 1 1 1[ ( )] 0
2 16 2

d x g g T R g R
G

µν
µν µν µνδ

π
− − − =∫  (6) 

(5) and (6) lead to Maxwell and Einstein equations under the textbook setting 

that the field variations Aµδ  and g µνδ are arbitrary and the functional 

differential equation (4) is satisfied [10-11, 13]. 

2. Dependent endpoint conditions    

Consider the generic case where fields and spacetime coordinates vary 

simultaneously on R , while the boundary term goes to zero at infinity. If the 

first term of (2) is sampled at fixed time intervals tδ , a convenient 

approximation of Sδ  over a discrete set of sampling points 1,2,...,i N=  can 

be written as   

 34 [ ]i i iiR
xS d x d t δ δδ ϕ δ ϕ= Λ∝ Λ∑∫  (7) 

where 

 1 1,1 1; 1x Nδδ ϕ<< << >>  (8a) 
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 ( )i ixϕ ϕ=  (8b) 

 ( , , )x
i i i ixϕ ϕΛ =Λ ∂  (8c) 

Sensitivity to initial conditions in coordinate and field spaces, respectively, 

causes exponential separation of adjacent trajectories as in  

 1 11( ) ( )exp[ ( )]i i i iii x xδϕ δϕ λ ϕ ϕ+ ++ ∝ − ;    0λ > ;   1i >  (9) 

and 

 1 1exp[ ( )]i ii ix x x xδ δ σ+ +∝ − ;    0σ > ;   1i >  (10) 

Coordinates and fields can only be measured to finite precision. This is to 

say that, in fact, there are infinitely many adjacent trajectories defined through 

 1 1x x Χ= +  (11a) 

 1 1ϕ ϕ Ω= +  (11b) 

with uncertainties upper bounded by their resolution limits respectively, that 

is,  
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 xX R≤  (12a) 

 RϕΩ ≤  (12b) 

Conditions (11) and (12) imply that all adjacent trajectories starting from 

points located within xR  and/or Rϕ  are initially indistinguishable from each 

other, even though they split apart later on. It follows that the endpoint 

variations of both field and coordinates are no longer independent and likely 

to become ill-defined for sufficiently large separations ( 1 iix x+ >>  and 

1 iiϕ ϕ+ >> ). Stated differently, dependent endpoint conditions induce 

memory-like effects and are asymptotically unpredictable. Another way to look 

at these observations is to acknowledge that deterministic dynamics of 

classical field theory no longer stands, in manifest contrast with the 

foundation of Maxwell’s electrodynamics and General Relativity.   

Although somewhat unexpected, these findings are nevertheless hardly 

surprising. They merely confirm the long-held belief that classical field 

theories complying with (3) are effective field approximations, endowed with 

limited ranges of validity.   
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Similar conclusions apply to situations where non-holonomic constraints 

and/or the virial theorem need to be accounted for [14-15]. For the sake of 

simplicity and concision, these cases are not included here.  

…text to follow… 
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